Biscyclopentadienyl Compounds of Trivalent Vanadium with Vanadium Element Bonds

G. A. RAZUVAEV, V. N. LATYAEVA, E. N. GLADYSHEV*, E. V. KRASILNIKOVA, A. N. LINEVA, A. P. KOZINA

Institute of Chemistry, Academy of Sciences of the U.S.S.R., Gorky, U.S.S.R.

Received July 17, 1978

Among organometallic derivatives of trivalent vanadium Cp₂VCH₂SiR₃ compounds are fairly stable [1] and suitable as starting compounds for a number of syntheses**.

It was of interest to use their interaction with organoelement hydrides to obtain bimetallic organometallic compounds with V-Sn, V-Ge, V-Si, V-N, V-S bonds. Hydrides of the type R_3EH (where R=Et, i-Pr; E=Sn, Ge and Si) were primarily used for this purpose. Their reactivity decreases in the order: $R_3SnH>R_3GeH>R_3SiH$ [3].

It was found that $Cp_2VCH_2SiMe_3$ (I) readily reacts with Et_3SnH even when unfreezing the reaction mixture:

(I) +
$$Et_3SnH \rightarrow Cp_2V-SnEt_3 + Me_4Si$$

Bimetallic organometallic compound Cp₂V-SnEt₃ was isolated as dark-blue crystals; some of its properties are presented in the Table.

Unlike the above compound triethylgermane reacts with the organovanadium compound only when heated:

(I) + Et₃GeH
$$\xrightarrow{100^{\circ}\text{C}}$$
 Cp₂V-GeEt₃ + Me₄Si

The reaction products are obtained with high yields. The substitution of triethylgermane for i-Pr₃GeH in this reaction does not afford a similar bimetallic organometallic isopropyl compound. Only the product of thermal decomposition of the starting compound, Cp₂V (75%) was observed among the reaction products after reacting for 3 hours at 110 °C. Therefore the synthesis of Cp₂V—Ge(Pr-i)₃ was achieved by an other route:

$$Cp_2VCl + i-Pr_3GeLi \rightarrow Cp_2V-Ge(Pr-i)_3 + LiCl$$

Physical properties of compounds obtained are presented in the Table. These are coloured crystalline

solids, monomeric in benzene. Organosilicon hydride Et₃SiH has a lower reactivity and does not afford organosilylmetallic compounds with V—Si bond under the given conditions. When heating I with Et₃SiH at 110 °C during 4 hours the formation of Cp₂V and Me₄Si (the products of thermal decomposition of the starting organovanadium compound) was observed in analogy with the above reaction. Triethylsilane was isolated unreacted.

I interacts with hexamethyldisilazane similarly to its reactions with organoelement hydrides resulting in quantitative yield of Cp₂V-N(SiMe₃)₂ previously described [1]:

$$(I) + HN(SiMe_3)_2 \xrightarrow{60-70 \text{ °C}}$$

$$Cp_2V-N(SiMe_3)_2 + Me_4Si$$

The interaction of I with butyl mercaptane is analogous to the above reactions. The product obtained is a dark-brown oil of butyl mercaptan derivative (see Table):

(I) +
$$HSC_4H_9 \xrightarrow{70^{\circ}C, 2h}$$

$$Cp_2V-SC_4H_9 + Me_4Si$$

The structure of the latter was proved by cleavage reaction with HCl affording Cp₂VCl₂ (80%) as well as by interaction with acetic acid according to:

$$Cp_2V-SC_4H_9 + 2CH_3COOH \rightarrow$$

$$CpV(OCOCH_3)_2 + CpH + C_4H_9SH$$

The yields of CpV(OCOCH₃)₂, CpH and C₄H₉SH obtained from this reaction are 90,70 and 60%, respectively.

The interaction of Cp₂VCH₂SiR₃ with organogermanium hydrosulphides and hydroselenides takes place in comparatively moderate conditions resulting in the corresponding compounds Cp₂V—SGeR₃ and Cp₂V—SeGeR₃:

(I) + R₃GeXH
$$\xrightarrow{50 ^{\circ}\text{C, 15 min}}$$
 hexane

Cp₂V-XGeR₃ + Me₄Si

$$R = Et$$
, i- Pr ; $X = S$, Se

The yields of reaction products are up to 70–95% and thus the method may be recommended to prepare new compounds. Sulphur- and selenium- containing compounds (Table) precipitated separately are dark-coloured crystalline solids. They are readily soluble in organic solvents and easily undergo hydrolysis and oxidation in the air. The structure of prepared

^{*}To whom correspondence should be addressed.

^{**}The formation of (Cp₂V)₂(CHSiMe₃)₂ as by-product in the synthesis of Cp₂VCH₂SiMe₃ from Cp₂V and Me₃-SiCH₂Cl [2] was not confirmed.

TABLE. Reactions of Cp2 V-R with R-H.

No.	Starting Reagents, g(mmol)	s, g(mmol)	Solvent	Reaction Conditions Cp ₂ V-R'	nditions	Cp ₂ V-R'	Colour	Reaction	Reaction Products	Mol. wt.	Analysis	Analysis % Found(Calc.)	Calc.)
	Cp ₂ V-R	R-H	(mJ)	Temp. (°C)	Time (min)			Mp °C	Yield, %	Found(Calc.)	C	Н	Λ
i i	R = CH ₂ SiMe ₃ 2.54 9.47	R' = Et ₃ Sn 1.52 9.32	toluene 15	~20	2h	Cp ₂ V-SnEt ₃	blue	57	88.4 ^b		48.84 (49.66)	6.90	13.25 (13.16)
5	$R = CH_2SiMe_3$ 0.72 2.68	R' = Et ₃ Ge 4.10 25.5		100	10-15	10–15 Cp ₂ V–GeEt ₃	dark-violet	32°	91.0	310 (340)	56.40 (56.57)	7.45 (7.95)	14.75 (14.90)
e;	R = CH ₂ SiMe ₃ 0.88 3.28	R' = Et ₃ GeS 1.53 6.36	pentane 10	50	10–15	10–15 Cp ₂ V–SGeEt ₃	black	17–18	95.1	358 (373)			13.20 (13.69)
4.	R = CH ₂ SiMe ₃ 1.14 4.25	R' = Et ₃ GeSe 3.28 13.66	hexane 20	90	10-15	10–15 Cp ₂ V–SeGeEt ₃	dark-brown 58–59		80.5		46.02 (45.90)	5.52 (5.96)	
5.	R = CH ₂ SiMe ₃ 1.05 3.91	R' = (i-Pt) ₃ GeSe 2.69 9.57	hexane 20	90	10–15	10–15 Cp ₂ V–SeGe(Pr-i) ₃	dark-brown	02-69	94.4	493 (462)	49.45	7.12 (6.72)	10.98 (11.06)
	R = GeEt ₃ 0.98 2.88	R' = Et ₃ GeS 0.80 4.14	hexane 10	~20	10-15	10–15 Cp ₂ V–SGeEt ₃	black	17–18	78.4	358 (373)			13.36 (13.69)

^aMe₄Si was obtained in reaction No. 1-5 with 59-94% yield. ^bYield was computed on the basis of the quantity of initial Et₃SnH used. ^cReported [4]: m.p. 32-34°.

compounds was determined by comprehensive methods, i.e. by cleavage with HCl, acetic acid and 1,2-dibromoethane.

Earlier it was shown that vanadium—germanium bond is less reactive as compared to V—C and V—N bonds in compounds of Cp₂VR type [4]. Our experiments proved that Cp₂VGeEt₃, Cp₂VGe(Pr-i)₃ and Cp₂VSnET₃ react when heated with hydrogen chloride to give Cp₂VCl and with cleavage of V—Ge, V—Sn bonds. In reactions with 1,2-dibromoethane Cp₂V-groupings are preserved and Cp₂VBr₂ is produced quantitatively. Yield of Et₃SnBr was 85%.

$$Cp_2V-SnEt_3 + 3/2 BrCH_2CH_2Br \rightarrow$$

$$Cp_2VBr_2 + 3/2CH_2 = CH_2 + Et_3SnBr$$

Compounds containing V-S-Ge and V-Se-Ge groupings undergo heterolysis with HCl easier than those with V-Ge bond. For instance Cp₂VCl is produced in several minutes in almost quantitative yields. The second reaction product Et₃GeSH transforms into the corresponding chloride by the action of HCl in excess:

$$Cp_2V$$
-SGeEt₃ + 2 HCl $\xrightarrow{\text{20 °C}}$

In our view the exchange reaction of Cp₂V-GeEt₃ with hydrosulphide Et₃GeSH is of interest. The reaction is complete in several minutes at room temperature. These conditions lead to the formation of triethylgermane (81%) and Cp₂V-SGeEt₃ (80%).

We managed to obtain a similar compound in the exchange reaction:

as well as in insertion reactions of chalcogen in the V-Ge bond, the latter being more interesting.

Similar processes are well known in the chemistry of bimetallic organometallic compounds. For example sulphur and selenium under moderate conditions are inserted into Hg-Ge, Hg-Si bonds *etc*. [5]. Our experiments showed that sulphur and selenium are inserted into V-Ge bond in hexane solutions at ~20 °C. The yields of Cp₂V-SGeR₃ and Cp₂V-SeGeR₃ compounds were 75-80%:

$$Cp_2V-GeR_3 + S(Se) \xrightarrow{20 \text{ °C}}$$

$$Cp_2V-SeR_3 + S(Se) \xrightarrow{hexane}$$

$$Cp_2V-SeR_3 + S(Cp_2V-SeGeR_3)$$

Sulphur and selenium-containing compounds were identical to those obtained according to the hydride method presented earlier.

Experimental

All reactions were carried out in evacuated sealed ampoules. Melting points were measured in evacuated sealed capillaries. GLC analyses of volatile products were carried out on a Tsvet-4 chromatograph with a catharometer detector using a 100 × 0.4 cm column packed with Silicone SE 30 (5%) on Chromaton N-AW-DMCS and with helium as the carrier gas. Typical experiments are given below.

Reaction of I with Triethyltin Hydride

2.54 g (9.47 mmol) of I was added to 1.92 g (9.32 mmol) of triethyltin hydride in 15 ml of toluene at liquid nitrogen temperatures. The mixture was heated to ca. 20 °C for 2 hours and the colour of the solution changed from dark-green to dark-blue. The solvent and Me₄Si (0.48 g, 59.1%) obtained were removed under vacuum. 15 ml of hexane were added to the residue (3.63 g); 3. 19 g (88.4%) of bis(η^5 -cyclopentadienyl)triethylstannylvanadium (m.p. 57°) were prepared by crystallization at -70 °C. Found: 48.84, H 6.90, V 13.25. Calcd. for C₁₆H₂₅SnV: C 49.66, H 6.51, V 13.16%.

Reaction of Cp₂V-GeEt₃ with Sulphur

0.20 g (6.25 mg-at) of fine sulphur powder were added to 1.67 g (4.90 mmol) of bis(η^5 -cyclopentadienyl)triethylgermylvanadium in 20 ml of hexane. The colour of the solution gradually changed from violet to brown. The reaction mixture was shaken during 24 h at room temperature and then filtered. Black crystalline solid Cp₂V-SGeEt₃ precipitated from the filtrate cooled down to -78 °C. The yield was 1.39 g (3.68 mmol), 75.1% (m.p. 17-18°).

Reaction of Cp₂VCl with Triisopropylgermyllithium

2.90 mmol of i-Pr₃GeLi in 15 ml of toluene were added to 0.63 g (2.91 mmol) of Cp₂VCl in 10 ml of THF. The colour of the reaction mixture changed from dark-blue to violet. Toluene and THF were removed under vacuum and 15 ml of hexane were added. Precipitated LiCl (2.75 mmol) (94.5%) was filtered off; 1.01 g (91.2%) of bis(η^5 -cyclopentadienyl)triisopropylgermylvanadium (m.p. 100–101°) were separated from the mother liquor by low-temperature crystallization. Found: C 59.90, H. 8.56; mol. wt. (cryoscopy in benzene), 371. Calcd. for C₁₉H₃₁GeV: C 59.60, H 8.16, mol. wt., 382.8.

References

- G. A. Razuvaev, V. N. Latyaeva, E. N. Gladyshev, A. N. Lineva, E. V. Krasilnikova, *Dokl. Akad. Nauk SSSR*, 223, 1144 (1975).
- 2 G. A. Razuvaev, V. N. Latyaeva, E. N. Gladyshev, A. N. Lineva, L. I. Vishinskaya, Proc. VIIIth Intern. Conf. Organometal. Chem., Kyoto, 1977, p. 149.
- 3 N. S. Vyazankin, O. A. Kruglaya, *Uspekhi Khim.*, 35, 1388 (1966).
- 4 G. A. Razuvaev, V. T. Bychkov, L. I. Vishinskaya, V. N. Latyaeva, N. N. Spiridonova, *Dokl. Akad. Nauk SSSR*, 220, 854 (1975).
- 5 E. N. Gladyshev, N. S. Vyazankin, V. S. Andreevichev, A. A. Klimov, G. A. Razuvaev, J. Organometal. Chem., 28, C42 (1971).